Brain-Computer Interface Based on Compressive Sensing and Steady-State Visual Evoked Potentials Applied to Command a Robotic Wheelchair

Name: HAMILTON RIVERA FLOR

Publication date: 21/09/2023
Advisor:

Namesort descending Role
RICARDO CARMINATI DE MELLO Co-advisor *
TEODIANO FREIRE BASTOS FILHO Advisor *

Examining board:

Namesort descending Role
ALAN SILVA DA PAZ FLORIANO External Examiner *
DENIS DELISLE RODRIGUEZ Co advisor *
RICARDO CARMINATI DE MELLO Co advisor *
TEODIANO FREIRE BASTOS FILHO Advisor *

Summary: Peoplewithseverephysicaldisabilitiesareableofusingroboticwheelchairs,whichgenerallydemandsomemotorskills,andthereforetotalusageofassociatemuscles.Robotic wheelchairscommandedbyBrain-ComputerInterfaces(BCIs)basedonElectroencephalography(EEG)havedemonstratedtobeanalternativefortheseend-users,assuchsystems translatebrainpatternsongoingEEGsignalsintocontrolcommands.However,BCIs relyingonlocalprocessingencounterlimitationsinpower,scalability,andreal-time.In general,existingroboticwheelchairscommandedbyBCIsrequirepowerfulhardwarefor highspeedsignalprocessing.Ontheotherhand,end-usersneedalongtrainingprocess forsafelydrivingthesedevices.Asasolution,cloud-basedBCIsandcloudroboticshave emerged,leveragingcloudcomputingforhigh-performancedataprocessing,storage,and analysis.Thisintegrationempowersadvancedandadaptiveroboticassistance,transformingtele-rehabilitationande-healthapplicationsforpeoplewithdisabilities.However, integratingcloudcomputingwithBCIsintroducesitsownsetofchallenges.Theseinclude anefficientandreliabletransmissionoflargevolumesofdataandstablecommunication betweenthebrainsignalsensor,cloudinfrastructure,androboticwheelchair.Toaddress thesechallenges,thisthesisintroducesanovelCloud-BCISystemforwheelchaircommand throughtheuseofSteady-StateVisualEvokedPotential(SSVEP),CompressiveSensing (CS)techniques,andacommunicationframework.ThesystemenhancesInformationTransferRate,ensuringstablecommunicationamongtheBCI,cloudinfrastructure,androbotic wheelchair.LeveragingcloudService-OrientedarchitectureandRoboticOperatingSystem (ROS),thesystemallowsforeasyintegrationofdiverseroboticplatformsandprovides flexibilitytointegratevariousprotocols,classifiers,metrics,andcommandtechniques. Inconclusion,thecloud-BCIsystemdemonstratestobeanefficientandflexiblesolutionfor commandingaroboticwheelchair,makingitavaluabletoolforresearchersanddevelopers inthefieldofassistivetechnologies,tele-rehabilitationandtrainingscenarios.

Access to document

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910